US009396041B2

a2 United States Patent 10) Patent No.: US 9,396,041 B2
Abraham et al. 45) Date of Patent: Jul. 19, 2016
(54) OPTIMIZATION OF RESOURCE USAGE IN A 8,615,589 B1* 12/2013 Adoglaetal. ... 709/226
MULTI-ENVIRONMENT COMPUTING 8,898,443 B2* 11/2014 Reevesoovverrn. GO6F 13/14
SYSTEM 7131

2004/0039862 Al 2/2004 Hunt et al.
2005/0227692 Al* 10/2005 Kawashima HO04W 36/365
(75) Inventors: Binu Abraham, Johnson, IA (US); 455/435.2

Doris W. Ling, San Jose, CA (US); .
(Continued)

Ansuman Tapan Satpathy, Sunnyvale,
CA (US); Judy C. Tsai, Los Altos, CA
Us)

(73) Assignee: Google Technology Holdings LL.C,
Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 866 days.

(21) Appl. No.: 13/363,989

FOREIGN PATENT DOCUMENTS

WO 2007035611 A2 3/2007

OTHER PUBLICATIONS

mozillaZine: “Moving your profile folder”, http://web.archive.org/
web/20100207172041/, http://kb.mozillazine.org/Moving_your__
profile folder, Jan. 29,2010, retrieved from the internet: URL:http://
kb.mozillazine.org/Moving _your_ profile folder [retrieved on Jul.
5, 2012], all pages.

(Continued)
(22) Filed: Feb. 1,2012
(65) Prior Publication Data Primary Examiner — Dustin Nguyen
US 2013/0198367 Al Aug. 1, 2013 (74) Attorney, Agent, or Firm — McDermott Will & Emery
LLP
(51) Imt.ClL
GO6F 15/173 (2006.01) (57) ABSTRACT
GO6F 9/50 (2006.01)
GO6F 9/48 (2006.01) A method and apparatus for modifying resource usage by a
(52) US.CL computing system including a first environment and a second
CPC ..o, GOG6F 9/5088 (2013.01); GO6F 9/4856 environment is disclosed. A status signal is received and

(2013.01); GOGF 9/5011 (2013.01)
(58) Field of Classification Search
CPC ... GOG6F 3/1415; GOGF 13/14; GOGF 21/74;

applications executed by the first environment and by the
second environment are monitored. The status signal may
indicate whether the computing system is coupled to an exter-

HO4W 36/365 nal device. It is determined whether a first application is

USPC 718/1, 104; 713/1; 726/19; 719/313; executed by the first environment and by the second environ-
703/22; 709/226; 455/435.2; 370/401; ment. Responsive to determining the first application is

711/162 executed by the first environment and by the second environ-

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

7,158,154 B2
7,376,949 B2

1/2007 Kim et al.
5/2008 Lowell et al.

o
1=}
S

ment, an amount of resources allocated to the first application
by each of the environments is calculated. Based on the first
amount of resources allocated by the different environments,
execution of the first application by the first environment or
by the second environment is halted.

13 Claims, 5 Drawing Sheets

Receive Status Signal

|

Monitor Executing

Appli

ions and Services

510

Applicatio
Executed by
First
Environment
and Second
Environment
515

Calculate Resources
Allocated to Application by
First Environment and by
Second Environment

520

I

Halt Application Execution
by First Environment or
Second Environment
Based on Resource
Allocation
526

US 9,396,041 B2
Page 2

(56)

2006/0106958
2007/0171921

2008/0307425
2009/0100425
2010/0031348
2010/0082321
2010/0083248
2010/0146513
2011/0016299
2011/0016301
2011/0093691
2011/0093836
2011/0099403
2011/0126216

References Cited

U.S. PATENT DOCUMENTS

Al
Al*

Al*
Al*
Al*
Al*
Al*

5/2006
7/2007

12/2008
4/2009
2/2010
4/2010
4/2010
6/2010
1/2011
1/2011
4/2011
4/2011
4/2011
5/2011

Khawand et al.
Wookey ..o GO6F 3/1415
370/401
Tripathicoccoceoveiennnn 718/104
Russell 718/1
Lametal. 726/19
Cherkasova et al. 703/22
Wood etal.ccoovevinnne, 718/1
Song
Galiciaetal.ccccovvvrnne 713/1
Galicia et al.

Galicia et al.
Galicia et al.
Miyata et al.
Galicia et al.

2011/0167421 Al 7/2011 Soundararajan et al.
2011/0283291 Al 112011 Tobe etal.

2012/0084791 Al* 4/2012 Benedeketal. ... 719/313

2012/0173741 Al 7/2012 Brittain et al.

2012/0233611 Al* 9/2012 VocCio ...cccvvivvviiiiiiicinnnns 718/1

2013/0111163 Al* 5/2013 Yangcccceeevninee GO6F 21/74
711/162

2015/0154053 Al 6/2015 Gangam et al.
OTHER PUBLICATIONS

Patent Cooperation Treaty, International Search Report and Written
Opinion of the International Searching Authority for International
Application No. PCT/US2011/067737, Aug. 1, 2012, 16 pages.
Patent Cooperation Treaty, International Search Report and Written
Opinion of the International Searching Authority for International
Application No. PCT/US2013/021370, Apr. 26, 2013, 11 pages.

* cited by examiner

US 9,396,041 B2

Sheet 1 of 5

Jul. 19, 2016

U.S. Patent

L 84nbi4

= _ s
201 818 Ae(dsig sl 10ss800.d
f 8JeMpIBH 80IAS(]
orl
[ouISy 1SOH
moﬁ
F ¥V Y
el — Gcl —
0clL ocl

\

JUSLUUOJIAUT pU0DSS

6El
$|00] /saLiBIgIT]
JUSLWIUOJIAUT pU0DSS

el
yJomaulel
uoneolddy puooss

6Ll FANS

0|
—
—

€l
suones|ddy
JUBWIUOJIAUT PUOIaS

A 4

\

JUSLIUOJIALT 18I

Bcl
awnuNy s

pxq)
yJomaulel
uoneol|ddy isli4

ccl
suoneolddy
JUBWUONIAUT 1SJ14

(e

US 9,396,041 B2

Sheet 2 of 5

Jul. 19, 2016

U.S. Patent

2p]
—

Z 2.nbi4

orl

A 4

(744

3INPON

JUSAT JUSWIUOJIAUT JSI1

[[]%4
SIOALI([8UISY ISOH

F 3

0cl
|)

0ce
SAIAIRG

JUBWIUOJIAUT PUODSS

[\[4
Jabeuey MOPUIpA

06¢
S3OIAIRG [B1IOd

€l
suoned|ddy
JUBWIUOIIAUT PUOIDS

ove
19MBIA
JUSLIUOIIAUT 18414

go¢
JaBeuely uonealddy
JuswIUOIAUT 3SJ1

0/¢
S80IAIeG

1UBWUOJIAUT 1841

c9c¢

]

— 52
JaBeuey 92059y

08¢
ANAnoY |epod

k4
suoeoddy
JUSWIUOJIAUT 1Sd1H

US 9,396,041 B2

Sheet 3 of 5

Jul. 19, 2016

U.S. Patent

¢ a.nbi4

0cl

JUSWIUOJIAUT PUODSS

cee
Aleign O NNO

Gee
soLelqi
JUSWUOJIAUT pU0DaS

[51%3
$958990.d
JUSWUOJIAUT pU0DaS

ol
[BUJ8Y] 1SOH
0zt
JUSUIUOIIAUT 1Sa14
> (33 M
Aseuqry O oluoig
A 4 A
0ce 01€
solelqi $955900.d

JUSWUOJIAUT 181

JusLlUOJIAUT 181

US 9,396,041 B2

Sheet 4 of 5

Jul. 19, 2016

U.S. Patent

2%
syduos
uoiezijeniu] 3sdi4 yaune

r 3

ory
s)diog uonezijeniu
puo9sg youne

9poN

puooag

$ 9.nbi

acy
91BIS 8pon

SGy
s)duog uonezienul
pLUO29S yauneT

A

05y
syduog
uonezijeniuy 3414 youne

(5%
80IAJSS UOWIWOT) YOUNET

4

Gy
BLIS]LID 91B)S SPOJA SS800Y

4

0cv
81e1S 8poly Alusp)

4

Sy
Jabeuepy 824n0say youne

A

olv
s1diiog uonezieniu| youne

4

Sov
[awiay| 1S0H azijemu|

O
A

US 9,396,041 B2

Sheet 5 of 5

Jul. 19, 2016

U.S. Patent

Ges
Uoiedo||y
92JN0S3Y UO paseg
JUSWIUOJIAUT PUOD8S
JO JUBWIUOIIAUT 18414 AQ
uonnasx] uoledlddy ey

0¢S
JusuwiuoJIAUg puodasg
AqQ pue juswuoliAug 1S4
Ag uoneoijddy 0} paieso|y
$92JN0S9Y 91BINJED

G a.nbi4

Glg
JUSLIUOJIAUT

puooeg pue

JUSWIUOIIAUT
1sdiq

AQ pajnoaxg

oheol|ddy

018

S92IAIBS pue suoneolddy
Buiinoax3 JoIUOI\|

F 3

A

S0S
[BUBIS SMBIS BAI909Y

00S

US 9,396,041 B2

1
OPTIMIZATION OF RESOURCE USAGE IN A
MULTI-ENVIRONMENT COMPUTING
SYSTEM

FIELD OF THE DISCLOSURE

The present disclosure relates generally to mobile device
systems, and more particularly to optimizing resource usage
by a mobile device system including multiple environments.

BACKGROUND

Computing devices use operating systems to manage
physical resources, applications and perform additional func-
tions. Typically, operating systems are designed and opti-
mized based on specific applications and user desired perfor-
mance. Additionally, operating systems may also be
customized to improve the performance of a specific hard-
ware configuration or configurations. While different operat-
ing systems may operate better with different types of com-
puting devices, it is desirable to have applications used by one
operating system accessible to a different operating system.

Operating systems, such as LINUX® or WINDOWS®,
configured for use by general-purpose computing devices
(also referred to as a “general-purpose operating systems”)
have an extensive set of features such as file systems, device
drivers, applications, libraries, etc. General-purpose operat-
ing systems allow concurrent execution of multiple pro-
grams, and attempt to optimize the response time (also
referred to as latency time) and/or processor usage, or load,
associated with the concurrently executing programs. How-
ever, operating systems configured for use by general-pur-
pose computing devices are typically unsuitable for embed-
ded real-time applications, such as use in mobile computing
devices such as smartphones or tablet computers. In certain
circumstances, however, it is desirable for a mobile comput-
ing device to combine the performance associated with a
mobile computing device-specific embedded operating sys-
tem and one or more features of a general-purpose operating
system.

For example, LINUX® is a commonly-used general pur-
pose operating system with many features that would also
benefit mobile computing devices. However, LINUX® was
not designed to be used as an embedded, or real-time, oper-
ating system for use by mobile computing devices. Currently,
many devices, such as set top boxes, mobile phones and car
navigation systems require features of a general purpose
operating system, such as LINUX®, as well as features of an
embedded, or real-time operating system, including real time
performance.

Given that general-purpose operating systems offer certain
benefits while embedded operating system offer other ben-
efits, particularly when used by certain types of devices, such
as mobile computing devices, implementing multiple operat-
ing systems on a single device allows a device to take advan-
tage of benefits from different types of operating systems.
Conventional methods for running multiple operating sys-
tems on a single device rely on virtualization techniques.
However, because virtualization emulates a complete com-
puting device, the emulated computing device implements
and operates one or more software stacks. Additionally, emu-
lation of a computing device introduces significant overhead,
making conventional virtualization techniques impractical
for certain types of devices, such as mobile devices.

Additionally, certain applications or services may be oper-
able by multiple operating systems. In conventional
approaches, an application or service may be concurrently

10

15

20

25

30

35

40

45

50

55

60

65

2

executing in different operating systems, increasing the
resources used by the application, which may impair overall
performance For example, executing the same application in
multiple operating systems decreases the memory available
for other applications.

BRIEF DESCRIPTION OF THE FIGURES

The accompanying Figures, where like reference numerals
refer to identical or functionally similar elements throughout
the separate views, together with the detailed description
below, are incorporated in and form part of the specification,
and serve to further illustrate embodiments of concepts that
include the claimed invention, and explain various principles
and advantages of those embodiments.

FIG. 1 is a block diagram of a mobile computing system
including multiple environments in accordance with some
embodiments.

FIG. 2 is a block diagram of additional components of a
mobile computing system including multiple environments
in accordance with some embodiments.

FIG. 3 is a block diagram of an example run-time coexist-
ence schema in accordance with some embodiments.

FIG. 4 is a flow chart of a method for booting a mobile
computing system including multiple environments in accor-
dance with some embodiments.

FIG. 5 is a flow chart of'a method for conserving resources
used by the mobile computing system in accordance with
some embodiments.

Skilled artisans will appreciate that elements in the figures
are illustrated for simplicity and clarity and have not neces-
sarily been drawn to scale. For example, the dimensions of
some of the elements in the figures may be exaggerated rela-
tive to other elements to help to improve understanding of
embodiments of the present invention.

The apparatus and method components have been repre-
sented where appropriate by conventional symbols in the
drawings, showing only those specific details that are perti-
nent to understanding the embodiments of the present inven-
tion so as not to obscure the disclosure with details that will be
readily apparent to those of ordinary skill in the art having the
benefit of the description herein.

DETAILED DESCRIPTION

A method for modifying resource usage by a computing
system including a first environment and a second environ-
ment is disclosed herein. A status signal is received and appli-
cations executed by the first environment and by the second
environment are monitored. For example, the status signal
indicates whether the computing system is coupled to an
external device, such as a dock. It is determined whether a first
application is executed by both the first environment and the
second environment. Responsive to determining the first
application is executed by the first environment and by the
second environment, a first amount of resources allocated to
the first application by the first environment is calculated and
a second amount of resources allocated to the first application
by the second environment is calculated. Based on the first
amount of resources and the second amount of resources,
execution of the first application by the first environment or
by the second environment is halted. The first application
continues to be executed by the other environment. In one
embodiment, the first application is halted from being
executed by the first environment responsive to the first
amount of resources exceeding the second amount of
resources. Alternatively, the first amount of resources and the

US 9,396,041 B2

3

second amount of resources are displayed and execution of
the first application by the first environment is halted respon-
sive to receiving a selection of the first amount of resources.

In the following description, for purposes of explanation,
numerous specific details are set forth to provide a thorough
understanding of the invention. However, it will be apparent
to one skilled in the art that the invention can be practiced
without these specific details. In other instances, structures
and devices are shown in block diagram form in order to avoid
obscuring the invention.

System Overview

FIG. 1 is a block diagram of a mobile computing system
100 including multiple environments in accordance with
some embodiments. The mobile computing system 100
shown by FIG. 1 includes a host operating system 102 com-
municating with device hardware 150 using a host kernel 140.
The host operating system 102 also includes a host user
component 105 that communicates with the host kernel 140.
In one embodiment, the host operating system 102 is a
LINUX®, or similar, operating system, such as a GNU/Linux
operating system. In such an embodiment, the host kernel 140
is a LINUX® kernel and the host user component 105 is a
LINUX® user component. However, in other embodiments,
a different type of kernel may be used as the host kernel 140.

The host user component 105 includes a first environment
120 and a second environment 130. Both the first environ-
ment 120 and the second environment 130 communicate with
the host kernel 140. Hence, a single host kernel 140 is used by
the first environment 120 and the second environment 130. In
the example shown by FIG. 1, the first environment 120
communicates with the host kernel 140 via communication
link 117 and the second environment 130 communicates with
the host kernel 140 via communication link 119. In one
embodiment, the host kernel 140 is a LINUX® kernel, the
first environment 120 is an embedded environment, such as
an environment used by mobile devices, while the second
environment 130 is a general purpose operating system. For
example, the host kernel 140 is a LINUX® kernel, the first
environment 120 is an ANDROID™ environment and the
second environment 130 is a GNU/Linux environment. How-
ever, in other embodiments, the first environment 120 and the
second environment 130 may be any suitable operating envi-
ronment. Either real-time or non-real time environments or
operating systems may be employed by the first environment
120 or the second environment 130. While FIG. 1 shows an
embodiment including a first environment 120 and a second
environment 130, in other embodiments, a greater number of
operating environments may be included in the host user
component 105; thus, more than two environments may oper-
ate and coexist independently of each other using a single host
kernel 140, as further described below. Additionally, the first
environment 120 and the second environment 130 communi-
cate with each other via communication link 115.

In one embodiment, the first environment 120 and the
second environment 130 operate and coexist independently
of each other. In certain embodiments, the first environment
120 and the second environment 130 are interdependent in at
least some aspects of operation. For example, the first envi-
ronment 120 and the second environment 130 interact with
the host kernel 140 and compete for resources of the host
kernel 140. As another example, the first environment 120 and
the second environment 130 communicate data with each
other using communication link 115, so the first environment
120 and the second environment 130 may operate in conjunc-
tion with one another for at least some operations or actions.
The host kernel 140 allocates resources of the mobile com-
puting system 100 by connecting and managing interaction

10

25

30

40

45

55

4

between the device hardware 150 and the first middleware
125 and/or the second middleware 135.

However, for purposes of explanation, the first environ-
ment 120 and the second environment 130 are considered
“independent” in that each of the environments 120, 130 is
capable of operating by itself if the other environment is not
present or is not operational. For example, the first environ-
ment 120 may operate if the second environment 130 is not
present. As another example, one of the environments 120,
130 is operationally independent before the other environ-
ment 130, 120 is implemented using the host kernel 140. In
some embodiments, the first environment 120 and the second
environment 130 are “independent” in that each of the envi-
ronments 120, 130 is a different type of environment serving
different operations and functions performed via the host
kernel 140, the device hardware 150 and other components
such as users or additional devices. For example, the first
environment 120 implements functions or operations com-
monly associated with an embedded operating system, such
as an operating system used by a mobile computing device,
while the second environment 130 implements functions or
operations commonly associated with a general purpose
operating system, such as an operating system used by a
desktop or laptop computer.

FIG. 1 further illustrates example components used by the
first environment 120 and example components used by the
second environment 130. In one embodiment, the first envi-
ronment 120 includes first environment applications 122 and
first middleware 125, which communicates with the first envi-
ronment applications 122. For example, if the first environ-
ment 120 is an ANDROID™ environment, the first environ-
ment applications 122 are configured to be executed by a
Dalvik virtual machine. The first environment applications
122 include stacks and other suitable application compo-
nents, and at least a subset of the first environment applica-
tions 122 are separable from one another. An application
included in the first environment applications 122 comprises
instructions that are recognizable by the first middleware 125,
which operates in conjunction with a processor 152 to execute
the instructions to provide one or more functions.

In the embodiment shown by FIG. 1, the first middleware
125 includes a first application framework 127 and a first
runtime environment 129. However, in other embodiments,
the first middleware 125 may include different and/or addi-
tional components, such as a radio interface module, a global
positioning system (GPS) module or any other suitable com-
ponent. The first environment applications 122 are managed
by the first application framework 127 and interpreted by the
first runtime environment 129. For example, the first runtime
environment 129 includes an interpreter that translates an
application from the first environment applications 122 dur-
ing run-time of the application.

In an embodiment where the first environment 120 is an
ANDROID™ environment, the first runtime environment
129 is a Dalvik register-based virtual machine (VM) that
communicates with Dalvik libraries and/or tools in addition
to additional components, such as the host kernel 140. The
Dalvik libraries and/or tools are implemented on top of the
host kernel 140 and implement functionality sufficient to
execute the Dalvik register-based VM. In one embodiment,
the Dalvik libraries are a subset of libraries supported by a
GNU/Linux-based operating system and provide functional-
ity optimized for implementation in mobile computing
devices. This allows development of applications for execu-
tion by devices subject to more resource constraints than a
desktop or laptop computer. A register-based virtual machine,
such as the Dalvik register-based VM, is easier to optimize on

US 9,396,041 B2

5

a particular device hardware configuration than a virtual
machine using a stack-based architecture (e.g., a virtual
machine based on JAVA®). Further, an environment using a
Dalvik, or similar, implementation replicates a complete
middleware layer rather than merely replicating a byte-code
interpreter, such as a virtual machine. Additionally, a Dalvik-
based, or similar, implementation allows developers to design
first environment applications 122 using a familiar syntax,
such as a JAVA® syntax. Thus, in an embodiment where the
first environment 120 includes first environment applications
122 prepared in Dalvik, or a similar configuration, the first
environment applications 122 are byte-code interpreted
applications.

In one embodiment, the second environment 130 includes
second environment applications 132 and second middleware
135, which communicates with the second environment
applications 132. In the embodiment shown by FIG. 1, the
second middleware 135 includes a second application frame-
work 137 and a second environment libraries and/or tools
module 139. The second environment libraries and/or tools
module 139 includes libraries for displaying data using a
graphical user interface (GUI) and/or additional libraries or
tools. However, in other embodiments, the second middle-
ware 135 may include different and/or additional compo-
nents, such as a desktop environment, a multimedia frame-
work component, a window manager component or any other
suitable component.

In one embodiment, the second environment applications
132 include one or more native applications that are com-
prised of instructions corresponding to the instruction set
architecture of the host kernel 140 or the device hardware
150. One or more of the second environment applications 132
include a stack and/or additional components separate from
other second environment applications 132. The second envi-
ronment applications 132 are managed by the second appli-
cation framework 137 and may use data and/or instructions
from the second environment libraries and/or tools module
139 and/or other components included in the second middle-
ware 135. An application included in the second environment
applications 132 comprises instructions that are recognizable
by the second middleware 135, which operates in conjunction
with a processor 152 to execute the instructions to provide
one or more functions. For example, if the second environ-
ment 130 is a GNU/Linux environment, the second environ-
ment applications 132 may be native applications using the
instruction set of the host kernel 140, which may be imple-
mented using GNU/Linux.

The first middleware 125 and the second middleware 135
are logically positioned between the first environment appli-
cations 122 and the second environment applications 132,
respectively. The first middleware 125 and the second
middleware 135 orchestrate interaction between the device
hardware 150 and the first environment applications 122 and
the second environment applications 132, respectively.

In the example shown by FIG. 1, the second environment
130 includes a plurality of logical memory partitions while
the first environment comprises a single memory partition as
well as system components. Further, in one embodiment, the
second environment 130 and the host kernel 140 share a
common instruction set. For example, the second environ-
ment 130 is a UBUNTU® stack, or a similar LINUX® stack.
In an embodiment where the second environment 130 com-
prises a UBUNTU® stack, the host kernel 140 may also be
implemented using UBUNTU®. However, in additional
embodiments, the second environment 130 may alternatively
comprise a different type of LINUX® environment, a SYM-
BAIN® environment, a WINDOWS® environment or

10

15

20

25

30

35

40

45

50

55

60

65

6

another other suitable operating environment. For example,
the second environment 130 may be a WINDOWS® environ-
ment and the host kernel 140 is also implemented using
WINDOWS®. However, in other embodiments, the second
environment 130 may comprise a single memory partition.
Additionally, one or more additional environments may be
included and may support one or multiple memory partitions.
In additional embodiments, greater than two environments
having a variety of different configurations independently
coexist using the same host kernel 140.

In the embodiment shown by FIG. 1, the device hardware
150 comprises a processor 152 and a display device 154;
however, in other embodiments the device hardware 150
includes different and/or additional components. In one
embodiment, the device hardware 150 includes a computer-
readable storage medium coupled to the processor 152. The
computer-readable storage medium includes instructions
that, when executed by the processor 152, execute one or
more functions. Additionally, the device hardware 150 may
include a communication device, such as a transceiver for
wireless communication and/or a port for wired communica-
tion. In other embodiments, the device hardware 150 includes
an audio output device, one or more input devices and/or any
other suitable components.

The processor 152 processes data or instructions and may
comprise various computing architectures. For example, the
processor 152 may process data or instructions using a com-
plex instruction set computer (CISC) architecture a reduced
instruction set computer (RISC) architecture, an architecture
implementing a combination of instruction sets or any other
suitable instruction set. Although FIG. 1 shows a single pro-
cessor 152, in other embodiments, the mobile computing
system 100 may include multiple processors. The processor
152 transmits, processes and/or retrieves data from the first
environment 120 and/or from the second environment 130
and/or from additional components.

The display device 154 is a device displaying electronic
images and/or data. For example, the display device 154
comprises an organic light emitting diode display (OLED), a
liquid crystal display (LCD) or any other device such as a
monitor. In one embodiment, the display device 154 includes
a touch-sensitive transparent panel for receiving data or
allowing other interaction with the images and/or data dis-
played by the display device 154.

FIG. 2 is a block diagram of additional components of a
mobile computing system 100 including multiple environ-
ments in accordance with some embodiments. In the embodi-
ment shown by FIG. 2, the first environment 120 and the
second environment 130 communicate with a host kernel
140. FIG. 2 illustrates the host kernel 140 including host
kernel drivers 215 and a first environment event module 225.
The host kernel drivers 215 include device drivers for one or
more components of the device hardware 150. However, in
other embodiments, the host kernel 140 includes different
and/or additional modules.

FIG. 2 shows components of the first environment 120 and
of'the second environment 130 in addition to the components
depicted by FIG. 1. In the embodiment illustrated by FIG. 2,
the first environment 120 includes a first environment appli-
cation manager 265, a first environment services module 270,
aportal activity module 280 and a portal services module 290
in addition to the first environment applications 122. In an
alternative embodiment, the portal activity module 280 is
included in the first environment applications 122. Further, in
one embodiment, first environment application manager 265,
the first environment services module 270 and the portal

US 9,396,041 B2

7

services module 290 are included in the first middleware 125,
which is further described above in conjunction with FIG. 1.

Also, FIG. 2 shows components included in the second
environment 130 in addition to those components further
described above in conjunction with FIG. 1. In the embodi-
ment shown by FIG. 2, the second environment 130 includes
a window manager 230, a first environment viewer 240, a
resource manager 260 and a second environment services
module 220 in addition to the second environment applica-
tions 132. In one embodiment, one or more of the second
environment services module 220, the window manager 230,
the first environment viewer 240 and the resource manager
260 are included in the second middleware 135, further
described above in conjunction with FIG. 1. In another
embodiment, the first environment viewer 240 is included in
the second environment applications 132.

The first environment viewer 240 displays a window
including data and/or an application from the first environ-
ment on an interface displayed on a display device 154 when
the second environment 130 is the primary environment. For
example, the first environment viewer 240 displays a window
showing one or more applications executed by the first envi-
ronment 120 in a graphical user interface displayed when the
second environment 130 is the primary environment. This
allows a user to view and interact with the first environment
120 via the displayed window while the second environment
130 is the primary environment.

The first environment event module 225 communicates
with the first environment viewer 240 and receives coordinate
events, keyboard events or other events received by the first
environment viewer 240. The received invents are communi-
cated by the first environment event module 225 to an event
hub. For example, the first environment event module 225
receives absolute coordinate and/or keyboard events from the
first environment viewer 240. In one embodiment, the event
hub communicates the received events to the first environ-
ment 120 or to one or more first environment applications
122.

The window manager 230 comprises instructions that,
when executed by the processor 152, display data from the
first environment 120 and/or the second environment 130
using the display device 154. The window manager 230 gen-
erates one or more windows in which data and/or an applica-
tion is displayed. Additionally, the window manager 230
receives input from a user to modify the size, shape or loca-
tion of a window displayed using the display device 154. For
example, the window manager 230 receives input from a user
to resize a window, such as an input repositioning a border of
the window to increase or decrease the size of the displayed
window.

The first environment application manager 265 comprises
one or more instructions that, when executed by the processor
152, identify applications and/or services executed by the first
environment 120. In one embodiment, the first environment
application manager 265 also determines the amount of
resources used by the applications and/or services executed
by the first environment 120. For example, the first environ-
ment application manager 265 includes application identifi-
ers associated with applications executed by the first environ-
ment 120 and associates an amount of resources used by the
application corresponding to an application identifier.
Examples of resource usage that is measured include memory
or processor time.

In one embodiment, the first environment application man-
ager 265 also communicates with the host kernel drivers 215
and receives data indicating whether the mobile computing
system 100 is coupled to an external device via the device

10

15

20

25

30

35

40

45

50

55

60

65

8

hardware 150. For example, the first environment application
manager 265 receives data from the host kernel drivers 215
and generates a status signal indicating whether the mobile
computing system 100 is coupled to a dock or another exter-
nal device. In one embodiment, the first environment appli-
cation manager 265 receives data from the host kernel drivers
215 and analyzes the received data to generate the status
signal. For example, the status signal has a first value respon-
sive to the device hardware 150 being coupled to a dock and
a second value responsive to the device hardware 150 not
being coupled to a dock.

The portal services module 290 comprises one or more
instructions that, when executed by a processor 152, enable
one or more services for the first environment 120 and/or
manage communication with the resource manager 260
included in the second environment 130. In an embodiment
where the first environment 120 is executed by a mobile
computing device, the portal services module 290 is executed
while the mobile computing device is operating. The portal
services module 290 is also coupled to the portal activity
module 280 and also receives broadcast events associated
with the first environment 120.

The portal activity module 280 comprises computer read-
able instructions that, when executed by the processor 152,
represent one or more applications included in the second
environment 130. For example, if the second environment
130 is a UBUNTU® environment, the portal activity module
280 represents a specific UBUNTU® application. When the
portal activity module 280 is accessed, the application
included in the second environment 130 is displayed on a
display device 154, allowing the application included in the
second environment 130 to be viewed and/or accessed from
the first environment 120.

Generally, multiple applications in an environment 120,
130 are capable of executing simultaneously in what is com-
monly referred to as a “stack” of executing applications. As
discussed herein, the topmost application in a stack is deemed
to have “focus.” Where multiple applications are available for
access by a user, the application currently receiving input
commands or data from a user is considered to be the appli-
cation having “focus.” For example, if multiple windows
corresponding to different applications are displayed on a
display device 154, the application associated with the win-
dow currently receiving input from the user is the application
having “focus.” In an embodiment, the second environment
130 enables display of multiple applications at a given time
while the first environment 120 enables display of a single
application at a time. For example, the second environment
130 allows multiple windows associated with different appli-
cations to be displayed at one time while the first environment
120 allows display of a single window associated with an
application at one time. However, in alternative embodi-
ments, the first environment 120 and the second environment
130 display different numbers of applications at a given time.

As further described above in conjunction with FIG. 1, the
first environment 120 and the second environment 130 com-
municate with each other and also communicate with a single
host kernel 140. In one embodiment, as described above in
conjunction with FIG. 1, the first environment 120 includes a
Dalvik register-based virtual machine replicating a complete
middleware layer rather than merely replicating a byte-code
interpreter, creating a possibility of conflict in the operation of
the first middleware 125 and the second middleware 135
allocating resources through the host kernel 140 without
appropriate steps. To avoid potential conflicts in resource
allocation by the host kernel 140, the resource manager 260,
included in the second environment 130, communicates

US 9,396,041 B2

9

directly with the portal services module 290 included in the
first environment 120 and vice versa.

The resource manager 260 included in the second environ-
ment 130 comprises instructions that, when executed by the
processor 152, manage resources shared by the first environ-
ment 120 and the second environment 130. For example, the
resource manager 260 manages use of resources such as the
display device 154, one or more input devices, a power sup-
ply, additional output devices and other suitable resources by
the first environment 120 and the second environment 130.
Further, the resource manager 260 maintains state informa-
tion associated with the mobile computing system 100. The
resource manager 260 also controls access to the device hard-
ware 150 by the first environment 120 and the second envi-
ronment 130. For example, the resource manager 260 identi-
fies and/or modifies whether a user interface associated with
the first environment 120 or with the second environment 130
is displayed using the display device 154.

In the embodiment shown by FIG. 2, the resource manager
260 includes a docking manager 262, which comprises
instructions that, when executed by the processor 152, deter-
mines whether the mobile computing system 100 is coupled
to dock or to another external device. For example, the dock-
ing manager 262 receives a status signal from the first envi-
ronment application manager 265 and analyzes the status
signal to determine whether the mobile computing system
100 is coupled to an external device. In one embodiment, the
status signal is a binary value having a first value when the
mobile computing system 100 is coupled to an external
device and having a second value when the mobile computing
system 100 is not coupled to an external device. Alternatively,
the status signal has multiple values associated with different
external devices and the docking manager 262 compares a
value of the status signal to stored values to identify the
external device to which the mobile computing system 100 is
coupled.

Responsive to the docking manager 262 receiving a status
signal from the first environment application manager 265
indicating the mobile computing system 100 is coupled to a
dock, the resource manager 260 monitors applications
executed by the first environment 120 and by the second
environment 130. The resource manager 260 determines
whether a first application is being executed by both the first
environment 120 and by the second environment 130. For
example, the resource manager 260 determines whether an
application identifier or application name is identified as
being executed by the first environment 120 and by the second
environment 130. If the resource manager 260 determines
that the first application is being executed by both the first
environment 120 and by the second environment 130, the
resource manager determines the amount of resources allo-
cated to the first application by the second environment 130
and communicates with the first environment application
manager 265 to determine the amount of resources allocated
to the first application by the first environment 120. For
example, the resource manager 260 determines an amount of
memory allocated to the first application by the first environ-
ment 120 and an amount of memory allocated to the first
application by the second environment 130.

In one embodiment, the resource manager 260 compares
the amount of resources allocated to the first application by
the first environment 120 to the amount of resources allocated
to the first application by the second environment 130 and
halts execution of the first application by the environment that
allocates the largest amount of resources to the first applica-
tion. For example, if the first environment 120 allocates more
resources to the first application than the second environment

10

15

20

25

30

35

40

45

50

55

60

65

10

130, the resource manager 260 halts execution of the first
application by the first environment 120, while continuing
execution of the first application by the second environment
130. Alternatively, the resource manager 260 generates a
message identifying the resources allocated to the first appli-
cation by the different environments and receives an input
selecting the environment to halt execution of the first appli-
cation. For example, responsive to a selection of the second
environment 130, the resource manager halts execution of the
first application by the second environment 130.

When the resource manager 260 halts execution of the first
application in an environment, the resource manager 260 also
transfers data and/or context associated with the first appli-
cation from the environment in which execution of the first
application is halted to the environment in which execution of
the first application continues. For example, if a web browser
is halted in the first environment 120, form data and/or uni-
form resource indicators (URIs) currently used by the web
browser in the first environment are transferred to the web
browser executed in the second environment 130. As an addi-
tional example, if a video viewing application is halted in the
second environment 130, the video being viewed and the
current location within the video is transferred to the video
viewing application executing in the first environment 120.
This allows users to preserve data when the environment in
which an application is changed while also conserving
resources by executing an application in a single environ-
ment.

In one embodiment, the portal services module 290
receives data for communication from the first environment
120 to the resource manager 260 included in the second
environment 130. Further, the portal services module 290
receives data from the resource manager 260 that is commu-
nicated to the first environment 120 from the second environ-
ment 130. In one embodiment, the resource manager 260 also
includes a status-discoverable application programming
interface (API) to the portal services module 290. The status-
discoverable AP may be called by the resource manager 260
at anytime. Additionally, the resource manager 260 obtains
and processes run-time status to maintain a state machine. In
one embodiment, for the first environment 120, the portal
services module 290 provides run-time status to processes.
Similarly, the portal services module 290 requests and
receives status updates from processes that provide status
information. In one embodiment, the portal services module
290 is included in the first runtime environment 129.

The resource manager 260 provides run-time status to pro-
cesses in the second environment 130 requesting and/or
requiring run-time status. In one embodiment, the host kernel
drivers 215 communicate with the resource manager 260 as
well as processes providing run-time status information. For
example, the status-discoverable API of the resource manager
260 arbitrates access to user interface devices, such as the
display device 154, a touch screen, a graphical user interface
or a similar user interface device. As another example, the
status-discoverable API arbitrates access to power supplies,
such as a battery or another power source.

As discussed above, in conjunction with FIG. 1, the first
environment 120 and the second environment 130 are inde-
pendent form each other and co-exist with respect to each
other. Each of the first environment 120 and the second envi-
ronment 130 is a fully functioning environment that does not
rely upon the other environment to function. Unlike conven-
tional configurations, the first environment 120 and the sec-
ond environment 130 do not co-exist in a virtualization or
emulation scheme. Rather, the first environment 120 and the
second environment 130 both operate on a single, shared host

US 9,396,041 B2

11

kernel 140. The first environment 120 and the second envi-
ronment 130 have run-time coexistence in which both the first
environment and the second environment 130 are run as
stand-alone, native environments. Neither the first environ-
ment 120 nor the second environment 130 is recompiled as a
common run-time environment, such as a C run-time envi-
ronment, is not leveraged for both environments. Because of
the first environment 120 and the second environment 130, a
user is capable of accessing an application that is configured
for operation on one of the environments without interrupting
an interaction with another environment.

FIG. 3 is a block diagram of an example run-time coexist-
ence schema in accordance with some embodiments. In the
example shown by FIG. 3, the first environment 120 is an
ANDROID™ environment and the second environment 130
is a UBUNTU® environment. Generally, the first environ-
ment 120 and the second environment 130 operate in a sepa-
rate run-time environment providing services for applications
and/or processes while the mobile computing system 100 is
operating.

In the embodiment shown by FIG. 3, first environment
processes 310 and first environment libraries 320 access a
Bionic C library 330, which is optimized and modified for the
first environment 120. In one embodiment, the first environ-
ment libraries 320 and the Bionic C library 330 are included
in the first runtime environment 129. Also in the embodiment
shown by FIG. 3, second environment processes 315 and
second environment libraries 325 communicate with a GNU
C library 335. In one embodiment, the second environment
libraries 325 and the GNU C library 335 are included in the
second environment libraries and/or tools module 139. Thus,
the first environment 120 and the second environment 130
each operate using its respective C library without conflicting
with the library used by the other environment 130, 120.
Methods

FIG. 4 is a flow chart of a method 400 for booting a mobile
computing system 100 including multiple environments in
accordance with some embodiments. In one embodiment, the
steps of the method 400 are implemented by instructions for
performing the described actions embodied or stored within a
computer-readable storage medium, such as a flash memory
or a random access memory, that are executable by a proces-
sor, such as the processor 152. Additionally, the method 400
may be implemented in embodiments of hardware, software
or combinations of hardware and software. Moreover, in
some embodiments, the method 400 includes different and/or
additional steps than those shown by FIG. 4.

The method 400 includes environment-specific steps and
steps performed by different environments. However, the
boot sequence may be modified based on rules associated
with a predetermined device state of the mobile computing
system 100 dictating the booting sequence. For example, if
the mobile computing system 100 is coupled to a peripheral
device, such as a monitor, the mobile computing system 100
operates in a second mode where the second environment 130
is the default primary environment. Alternatively, if the
mobile computing system 100 is not coupled to a peripheral
device, the mobile computing system 100 operates in a first
mode where the first environment 120 is the default primary
environment.

While one of the first environment 120 or the second envi-
ronment 130 acts as a primary environment, both environ-
ments are launched simultaneously or nearly simultaneously.
Additionally, once the first environment 120 and the second
environment 130 are launched and one of the environments
serves as the primary environment, the secondary environ-
ment operates in the background relative to the primary envi-

20

25

35

40

45

55

60

12

ronment, in case the state changes and the secondary envi-
ronment becomes the primary environment. For example,
when the mobile computing system 100 is in the second mode
and the peripheral is unplugged, there is an automatic transi-
tion to the first mode, resulting in the secondary environment
becoming the primary environment and vice versa.

In the embodiment shown by FIG. 4, the host kernel 140 is
initialized 405. For example, a bootloader program is
launched or initialized. After initialization, the host kernel
140 launches 410 initialization scripts and launches 415 the
resource manager 260. After launching 415 the resource man-
ager, the mode state is identified 420, and a reference library
is accessed 425 to determine criteria associated with the iden-
tified mode or criteria dictated by the identified mode.

Services common to the first environment 120 and the
second environment 130 are then launched 430 and the iden-
tified mode state is determined 435. Responsive to determin-
ing 435 that a first mode is identified, initialization scripts
associated with the first environment 120 are launched 450
and then initialization scripts associated with the second envi-
ronment 130 are launched 455. Hence, in the first mode, the
first environment 120 operates as the primary environment
while the second environment operates as the secondary envi-
ronment.

Responsive to determining 435 that a second mode is iden-
tified, initialization scripts associated with the second envi-
ronment 130 are launched 440 then initialization scripts asso-
ciated with the first environment 120 are launched 445. Thus,
in the second mode, the second environment 130 operates as
the primary environment, while the first environment 120
operates as the secondary environment.

However, regardless of which environment is the primary
environment, both the first environment 120 and the second
environment 130 are launched and become operational before
the mobile computing system 100 is operational. Further,
because services common to the first environment 120 and the
second environment 130 are launched 430 prior to the envi-
ronment-specific initialization scripts, the primary and sec-
ondary environments are essentially launched in parallel.
However, primary environment-specific services are
launched before services specific to the secondary environ-
ment. By separating launching 430 of common services from
environment-specific initialization scripts, the mobile com-
puting system 100 is able to quickly become operational with
multiple co-existing and independent environments. While
boththe primary environment and secondary environment are
executing when the mobile computing system 100 is opera-
tional, the secondary environment operates in the background
relative to the primary environment. Either the first environ-
ment 120 or the second environment 130 may be the primary
environment; additionally, the primary environment may be
switched to the secondary environment automatically or
responsive to user commands.

FIG. 5 is a flow chart of a method 500 for conserving
resources used by the mobile computing system 100 in accor-
dance with some embodiments. In one embodiment, the steps
of the method 500 are implemented by instructions for per-
forming the described actions embodied or stored within a
computer-readable storage medium, such as a flash memory
or a random access memory, that are executable by a proces-
sor, such as the processor 152. Additionally, the method 500
may be implemented in embodiments of hardware, software
or combinations of hardware and software. Moreover, in
some embodiments, the method 500 includes different and/or
additional steps than those shown by FIG. 5.

In the embodiment shown by FIG. 5, a docking manager
262 included in a resource manager 260 executing in the

US 9,396,041 B2

13

second environment 130 receives 505 a status signal from the
first environment application manager 265 and analyzes the
status signal to determine whether the mobile computing
system 100 is coupled to an external device. In one embodi-
ment, the status signal is a binary value having a first value
when the mobile computing system 100 is coupled to an
external device and having a second value when the mobile
computing system 100 is not coupled to an external device.
Alternatively, the status signal has multiple values associated
with different external devices and the docking manager 262
compares a value of the status signal to stored values to
identify the external device to which the mobile computing
system 100 is coupled.

Responsive to the docking manager 262 receiving 505 a
status signal from the first environment application manager
265 indicating the mobile computing system 100 is coupled
to a dock, the resource manager 260 monitors 510 applica-
tions executed by the first environment 120 and by the second
environment 130. The resource manager 260 determines
applications being executed by the second environment 130
and the resources used by execution of the applications being
executed by the second environment 130. Also, the resource
manager 260 exchanges data with the first environment appli-
cation manager 265 to determine applications being executed
by the first environment 120 and the resources used by execu-
tion of the applications being executed by the first environ-
ment 120.

The resource manager 260 determines 515 whether a first
application is being executed by both the first environment
120 and by the second environment 130. For example, the
resource manager 260 determines 515 whether an application
identifier or application name is identified as being executed
by the first environment 120 and by the second environment
130. Responsive to determining 515 the first application is not
executed by both the first environment 120 and the second
environment 130, the resource manager 260 continues to
monitor 510 the applications and/or services executed by the
first environment 120 and by the second environment 130.
However, responsive to determining 515 the first application
is being executed by both the first environment 120 and by the
second environment 130, the resource manager 260 calcu-
lates 520 the amount of resources allocated to the first appli-
cation by the second environment 130 and communicates
with the first environment application manager 265 to calcu-
late 520 the amount of resources allocated to the first appli-
cation by the first environment 120. For example, the resource
manager 260 calculates 520 an amount of memory allocated
to the first application by the first environment 120 and an
amount of memory allocated to the first application by the
second environment 130.

Responsive to the first application being executed by both
the first environment 120 and by the second environment 130,
the resource manager 260 halts 525 execution of the first
application by either the first environment 120 or by the
second environment 130 based on resource usage by the
different environments. In one embodiment, the resource
manager 260 compares the amount of resources allocated to
the first application by the first environment 120 to the
amount of resources allocated to the first application by the
second environment 130 and halts 525 execution of the first
application by the environment allocating the largest amount
of resources to the first application. For example, if the first
environment 120 allocates more resources to the first appli-
cation than the second environment 130, the resource man-
ager 260 halts 525 execution of the first application by the first
environment 120, while continuing execution of the first
application by the second environment 130. Alternatively, the

10

20

25

30

40

45

50

55

60

65

14

resource manager 260 generates a message identifying the
resources allocated to the first application by the different
environments and receives an input selecting the environment
to halt 525 execution of the first application. For example,
responsive to a selection of the second environment 130, the
resource manager halts 525 execution of the first application
by the second environment 130.

When the resource manager 260 halts 525 execution of the
first application in an environment, the resource manager 260
also transfers data and/or context associated with the first
application from the environment in which execution of the
first application is halted to the environment in which execu-
tion of the first application continues. For example, if a web
browser is halted 525 in the first environment 120, form data
and/or uniform resource indicators (URIs) currently used by
the web browser in the first environment are transferred to the
web browser executed in the second environment 130. As an
additional example, if a video viewing application is halted
525 in the second environment 130, the video being viewed
and the current location within the video is transferred to the
video viewing application executing in the first environment
120. This allows users to preserve data when the environment
in which an application is changed while also conserving
resources by executing an application in a single environ-
ment.

The benefits, advantages, solutions to problems, and any
element(s) that may cause any benefit, advantage, or solution
to occur or become more pronounced are not to be construed
as a critical, required, or essential features or elements of any
or all the claims. The invention is defined solely by the
appended claims including any amendments made during the
pendency of this application and all equivalents of those
claims as issued.

Moreover in this document, relational terms such as first
and second, top and bottom, and the like may be used solely
to distinguish one entity or action from another entity or
action without necessarily requiring or implying any actual
such relationship or order between such entities or actions.
The terms “comprises,” “comprising,” “has,” “having,”
“includes,” “including,” “contains,” “containing” or any other
variation thereof, are intended to cover a non-exclusive inclu-
sion, such that a process, method, article, or apparatus that
comprises, has, includes, contains a list of elements does not
include only those elements but may include other elements
not expressly listed or inherent to such process, method,
article, or apparatus. An element proceeded by “comprises . .
.a”“ha...a” “includes ... a,” or “contains . . . a”” does not,
without more constraints, preclude the existence of additional
identical elements in the process, method, article, or appara-
tus that comprises, has, includes, contains the element. The
terms “a” and “an” are defined as one or more unless explic-
itly stated otherwise herein. The terms “substantially,”
“essentially,” “approximately,” “about” or any other version
thereof, are defined as being close to as understood by one of
ordinary skill in the art, and in one non-limiting embodiment
the term is defined to be within 10%, in another embodiment
within 5%, in another embodiment within 1% and in another
embodiment within 0.5%. The term “coupled” as used herein
is defined as connected, although not necessarily directly and
not necessarily mechanically. A device or structure that is
“configured” in a certain way is configured in at least that
way, but may also be configured in ways that are not listed.

It will be appreciated that some embodiments may be com-
prised of one or more generic or specialized processors (or
“processing devices™) such as microprocessors, digital signal
processors, customized processors and field programmable
gate arrays (FPGAs) and unique stored program instructions

29 <

US 9,396,041 B2

15

(including both software and firmware) that control the one or
more processors to implement, in conjunction with certain
non-processor circuits, some, most, or all of the functions of
the method and/or apparatus described herein. Alternatively,
some or all functions could be implemented by a state
machine that has no stored program instructions, or in one or
more application specific integrated circuits (ASICs), in
which each function or some combinations of certain of the
functions are implemented as custom logic. In some embodi-
ments, a combination of the two approaches may be used.
Moreover, an embodiment can be implemented as a com-
puter-readable storage medium having computer readable
code stored thereon for programming a computer (e.g., com-
prising a processor) to perform a method as described and
claimed herein. Examples of such computer-readable storage
mediums include, but are not limited to, a hard disk, a CD-
ROM, an optical storage device, a magnetic storage device, a
ROM (Read Only Memory), a PROM (Programmable Read
Only Memory), an EPROM (Erasable Programmable Read
Only Memory), an EEPROM (Electrically Erasable Pro-
grammable Read Only Memory) and a Flash memory. Fur-
ther, it is expected that one of ordinary skill, notwithstanding
possibly significant effort and many design choices motivated
by, for example, available time, current technology, and eco-
nomic considerations, when guided by the concepts and prin-
ciples disclosed herein will be readily capable of generating
such software instructions, programs and/or integrated cir-
cuits with minimal experimentation.
The Abstract of the Disclosure is provided to allow the
reader to quickly ascertain the nature of the technical disclo-
sure. It is submitted with the understanding that it will not be
used to interpret or limit the scope or meaning of the claims.
In addition, in the foregoing Detailed Description, it can be
seen that various features are grouped together in various
embodiments for the purpose of streamlining the disclosure.
This method of disclosure is not to be interpreted as reflecting
an intention that the claimed embodiments require more fea-
tures than are expressly recited in each claim. Rather, as the
following claims reflect, inventive subject matter lies in less
than all features of a single disclosed embodiment. Thus the
following claims are hereby incorporated into the Detailed
Description, with each claim standing on its own as a sepa-
rately claimed subject matter.
What is claimed is:
1. A method comprising:
monitoring, using instructions executed by a processor,
applications executed by a first environment and appli-
cations executed by a second environment;

determining that a first application is executed by the first
environment and by the second environment;

responsive to determining that the first application is
executed by the first environment and by the second
environment, calculating a first amount of resources
allocated to the first application by the first environment
and calculating a second amount of resources allocated
to the first application by the second environment;

halting execution of the first application in one or more
memory partitions of the first environment or in one or
more memory partitions of the second environment
based on the first amount of resources and the second
amount of resources; and

transferring data from the first application on the first envi-

ronment to the second environment if the first amount of
resources exceeds the second amount of resources or
data from the first application on the second environ-
ment to the first environment if the second amount of
resources exceeds the first amount of resources.

20

40

45

50

16

2. The method of claim 1, wherein halting execution of the
first application in the one or more memory partitions of the
first environment or in the one or more memory partitions of
the second environment based on the first amount of
resources and the second amount of resources comprises:

responsive to the first amount of resources exceeding the
second amount of resources, halting execution of the
first application in the one or more memory partitions of
the first environment.

3. The method of claim 1, wherein halting execution of the
first application in the one or more memory partitions of the
first environment or in the one or more memory partitions of
the second environment based on the first amount of
resources and the second amount of resources comprises:

displaying the first amount of resources and the second
amount of resources; and

responsive to receiving a selection of the first amount of
resources, halting execution of the first application by
the first environment.

4. The method of claim 1, further comprising:

receiving a status signal indicating a mobile computing
system including the processor is coupled to a docking
station.

5. An apparatus comprising:

a processor;

a computer-readable storage medium coupled to the pro-
cessor, the computer-readable storage medium includ-
ing instructions that, when executed by the processor,
cause the processor to:

monitor applications executed by the processor in a first
environment and applications executed in a second envi-
ronment;

determine whether a first application is executed by the first
environment and by the second environment;

responsive to determining the first application is executed
by the first environment and by the second environment,
calculate a first amount of resources allocated to the first
application by the first environment and calculating a
second amount of resources allocated to the first appli-
cation by the second environment;

halt execution of the first application by the processor in
one or more memory partitions of the first environment
or in one or more memory partitions of the second envi-
ronment based on the first amount of resources and the
second amount of resources; and

transfer data from the first application on the first environ-
ment to the second environment if the first amount of
resources exceeds the second amount of resources or
data from the first application on the second environ-
ment to the first environment if the second amount of
resources exceeds the first amount of resources.

6. The apparatus of claim 5, wherein halt execution of the
first application by the processor in the one or more memory
partitions of the first environment or in the one or more
memory partitions of the second environment based on the
first amount of resources and the second amount of resources
comprises:

responsive to the first amount of resources exceeding the
second amount of resources, halt execution of the first
application by the processor in the first environment.

7. The apparatus of claim 5, wherein halt execution of the
first application by the processor in the one or more memory
partitions of the first environment or in the one or more
memory partitions of the second environment based on the
first amount of resources and the second amount of resources
comprises:

US 9,396,041 B2

17

display the first amount of resources and the second
amount of resources on a display device; and

responsive to receiving a selection of the first amount of
resources, halt execution of the first application by the
processor in the first environment.

8. The apparatus of claim 5, wherein the instructions fur-
ther cause the processor to:

receive a status signal indicating a coupling to a docking

station.
9. A non-transitory computer readable storage medium
coupled to a processor, the non-transitory computer readable
storage medium including instructions that, when executed
by the processor, cause the processor to:
monitor applications executed by a first environment and
applications executed by a second environment;

determine whether a first application is executed by the first
environment and by the second environment;

responsive to determining the first application is executed
by the first environment and by the second environment,
calculate a first amount of resources allocated to the first
application by the first environment and calculate a sec-
ond amount of resources allocated to the first application
by the second environment;

halt execution of the first application in one or more

memory partitions of the first environment or in one or
more memory partitions of the second environment
based on the first amount of resources and the second
amount of resources; and

transfer data from the first application on the first environ-

ment to the second environment if the first amount of
resources exceeds the second amount of resources or
data from the first application on the second environ-
ment to the first environment if the second amount of
resources exceeds the first amount of resources.

15

25

30

18

10. The non-transitory computer readable storage medium
of claim 9, wherein halt execution of the first application in
the one or more memory partitions of the first environment or
in the one or more memory partitions of the second environ-
ment based on the first amount of resources and the second
amount of resources comprises:

responsive to the first amount of resources exceeding the

second amount of resources, halt execution of the first
application in the one or more memory partitions of the
first environment.

11. The non-transitory computer readable storage medium
of claim 9, wherein halt execution of the first application in
the one or more memory partitions of the first environment or
in the one or more memory partitions of the second environ-
ment based on the first amount of resources and the second
amount of resources comprises:

display the first amount of resources and the second
amount of resources; and

responsive to receiving a selection of the first amount of
resources, halt execution of the first application in the
one or more memory partitions of the first environment.

12. The non-transitory computer readable storage medium
of'claim 9, wherein the instructions further cause the proces-
sor to:

receive a status signal indicating a portable computing
device including the processor is coupled to a docking
station.

13. The method of claim 1, wherein the execution of the
first application in the first environment is halted while the
execution of the first application is continued in the second
environment.

